Indian Statistical Institute, Bangalore

M. Math.

Second Year, First Semester
Operator Theory
Final Examination
Maximum marks: 100

Date: Dec 16, 2020
Time: 3 hours
Instructor: B V Rajarama Bhat
(1) Let $C[0,1]$ be the space of complex valued continuous functions on $[0,1]$ with supremum norm.
(i) Define $A: C[0,1] \rightarrow C[0,1]$ by

$$
A f(x)=f\left(\frac{x}{2}\right), \forall x \in[0,1], f \in C[0,1]
$$

Show that A is not compact.
(ii) Define $B: C[0,1] \rightarrow C[0,1]$ by

$$
\begin{equation*}
B f(x)=f(0) x+f(1) x^{2}, \forall x \in[0,1], f \in[0,1] \tag{15}
\end{equation*}
$$

Show that B is compact.
(2) Let $D: C[-1,1] \rightarrow C[-1,1]$ be the linear operator defined by

$$
\begin{equation*}
D f(x)=\int_{-1}^{1}(x+y)^{2} f(y) d y, \forall x \in[-1,1], f \in C[-1,1] \tag{15}
\end{equation*}
$$

Show that D is compact. Find its spectrum.
(3) Let \mathcal{M} be the normed linear space of 2×2 complex matrices with operator norm. Define a product on \mathcal{M} by $a b=0$ for every a, b in \mathcal{M}. (i) Show that \mathcal{M} is a nonunital commutative Banach algebra. (ii) Let \mathcal{M}^{+}be the unitization of \mathcal{M} (with suitable norm). Find the spectrum of the matrix

$$
b=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right]
$$

as an element of \mathcal{M}^{+}.
[15]
(4) Let \mathcal{A} be a unital commutative Banach algebra. Let Δ be the maximal ideal space of \mathcal{A} and let $a \mapsto \hat{a}$ from \mathcal{A} to $C(\Delta)$ be the Gelfand map. Show that the Gelfand map is an isometry, that is, $\|\hat{a}\|=\|a\|$ for all $a \in \mathcal{A}$, if and only if $\left\|a^{2}\right\|=\|a\|^{2}$ for all $a \in \mathcal{A}$.

(5) Let c be a contraction $(\|c\| \leq 1)$ in a unital C^{*}-algebra. (i) Show that $1-c^{*} c$ and $1-c c^{*}$ are positive. (ii) Show that $c\left(1-c^{*} c\right)^{\frac{1}{2}}=\left(1-c c^{*}\right)^{\frac{1}{2}} c$. (Hint: First observe $c\left(1-c^{*} c\right)^{n}=\left(1-c c^{*}\right)^{n} c$ for all $\left.n \geq 1\right)$.

$$
[15]
$$

(6) Let \mathcal{A} be a unital C^{*}-algebra and let $x \in \mathcal{A}$ be self-adjoint. Suppose $\lambda \in \sigma(x)$. Show that there exists a representation $\pi: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H})$ of \mathcal{A} on some Hilbert space \mathcal{H}, with a unit vector $v \in \mathcal{H}$ such that

$$
\begin{equation*}
\lambda=\langle v, \pi(x) v\rangle \tag{15}
\end{equation*}
$$

(7) Fix $n \geq 3$. Let $M_{n}(\mathbb{C})$ be the C^{*}-algebra of $n \times n$ matrices. Define a state ϕ on $M_{n}(\mathbb{C})$ by

$$
\phi\left(\left[x_{i j}\right]\right)=\frac{x_{11}}{3}+\frac{2 x_{22}}{3},\left[x_{i j}\right] \in M_{n}(\mathbb{C})
$$

(i) Find the dimension of the Hilbert space for the minimal GNS construction of ϕ. (ii) Decide as to whether this GNS representation is injective or not (prove your claim).

