Indian Statistical Institute, Bangalore M. Math.

Second Year, First Semester Operator Theory

Final Examination Maximum marks: 100 Date : Dec 16, 2020 Time: 3 hours Instructor: B V Rajarama Bhat

(1) Let C[0, 1] be the space of complex valued continuous functions on [0, 1] with supremum norm.

(i) Define
$$A: C[0,1] \to C[0,1]$$
 by

$$Af(x) = f(\frac{x}{2}), \ \forall x \in [0,1], f \in C[0,1].$$

Show that A is not compact.

(ii) Define $B: C[0,1] \to C[0,1]$ by

$$Bf(x) = f(0)x + f(1)x^2, \ \forall x \in [0,1], f \in [0,1].$$

Show that B is compact.

(2) Let $D: C[-1,1] \to C[-1,1]$ be the linear operator defined by

$$Df(x) = \int_{-1}^{1} (x+y)^2 f(y) dy, \ \forall x \in [-1,1], f \in C[-1,1].$$

Show that D is compact. Find its spectrum.

(3) Let \mathcal{M} be the normed linear space of 2×2 complex matrices with operator norm. Define a product on \mathcal{M} by ab = 0 for every a, b in \mathcal{M} . (i) Show that \mathcal{M} is a nonunital commutative Banach algebra. (ii) Let \mathcal{M}^+ be the unitization of \mathcal{M} (with suitable norm). Find the spectrum of the matrix

$$b = \left[\begin{array}{cc} 1 & 2 \\ 0 & 2 \end{array} \right],$$

as an element of \mathcal{M}^+ .

- (4) Let \mathcal{A} be a unital commutative Banach algebra. Let Δ be the maximal ideal space of \mathcal{A} and let $a \mapsto \hat{a}$ from \mathcal{A} to $C(\Delta)$ be the Gelfand map. Show that the Gelfand map is an isometry, that is, $\|\hat{a}\| = \|a\|$ for all $a \in \mathcal{A}$, if and only if $\|a^2\| = \|a\|^2$ for all $a \in \mathcal{A}$. [15]
- (5) Let c be a contraction ($||c|| \le 1$) in a unital C^* -algebra. (i) Show that $1 c^*c$ and $1 cc^*$ are positive. (ii) Show that $c(1 c^*c)^{\frac{1}{2}} = (1 cc^*)^{\frac{1}{2}}c$. (Hint: First observe $c(1 c^*c)^n = (1 cc^*)^n c$ for all $n \ge 1$). [15]
- (6) Let \mathcal{A} be a unital C^* -algebra and let $x \in \mathcal{A}$ be self-adjoint. Suppose $\lambda \in \sigma(x)$. Show that there exists a representation $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ of \mathcal{A} on some Hilbert space \mathcal{H} , with a unit vector $v \in \mathcal{H}$ such that

$$\lambda = \langle v, \pi(x)v \rangle.$$

[15]

(7) Fix $n \geq 3$. Let $M_n(\mathbb{C})$ be the C^* -algebra of $n \times n$ matrices. Define a state ϕ on $M_n(\mathbb{C})$ by

$$\phi([x_{ij}]) = \frac{x_{11}}{3} + \frac{2x_{22}}{3}, \ [x_{ij}] \in M_n(\mathbb{C}).$$

(i) Find the dimension of the Hilbert space for the minimal GNS construction of ϕ . (ii) Decide as to whether this GNS representation is injective or not (prove your claim). [15]

[15]

[15]

[15]